
Linux WirelessLinux Wireless

WiFi overview

Johannes Martin Berg

2009-06-27



Linux Wireless

Introduction

We’ll cover
• mac80211
• rfkill
• wext (and quickly forget about it)
• cfg80211/nl80211
• wpa_supplicant
• hostapd

Linux Wireless



Linux Wireless

Architecture – current

Linux Wireless



Linux Wireless

Architecture – planned

Linux Wireless



Linux Wireless

mac80211
• is a subsystem to the Linux kernel
• implements shared code for soft-MAC/half-MAC wireless

devices
• contains MLME and other code, despite the name

Linux Wireless



Linux Wireless

– Recent History

Some notable additions to mac80211:

HT/aggregation support Intel
802.11s draft support cozybit through o11s.org
802.11w draft support Jouni Malinen (Atheros)
PS (infrastructure mode) Kalle Valo (Nokia)

Vivek Natarajan (Atheros)
beacon processing offload Kalle Valo (Nokia)

Linux Wireless



Linux Wireless

Architecture

Linux Wireless



Linux Wireless

Architectureinternally

• TX/RX paths (including software en-/decryption)
• control paths for managed, IBSS, mesh
• some things for AP (e.g. powersave buffering)
• ...

Linux Wireless



Linux Wireless

Data structures

• ieee80211_local/ieee80211_hw
• sta_info/ieee80211_sta
• ieee80211_conf
• ieee80211_bss_conf
• ieee80211_key/ieee80211_key_conf
• ieee80211_tx_info
• ieee80211_rx_status
• ieee80211_sub_if_data/ieee80211_vif

Linux Wireless



Linux Wireless

Data structures – ieee80211_local/ieee80211_hw

• each instance of these (hw is embedded into local) represents a
wireless device

• ieee80211_hw is the part of ieee80211_local that is visible to
drivers

• contains all operating information about a wireless device

Linux Wireless



Linux Wireless

Data structures – sta_info/ieee80211_sta

• represents any station (peer)
• could be mesh peer, IBSS peer, AP, WDS peer
• would also be used for DLS peer
• ieee80211_sta is driver-visible part
• ieee80211_find_sta for drivers
• lifetime managed mostly with RCU

Linux Wireless



Linux Wireless

Data structures – ieee80211_conf

• hardware configuration
• most importantly - current channel
• intention: hardware specific parameters

Linux Wireless



Linux Wireless

Data structures – ieee80211_bss_conf

• BSS configuration
• for all kinds of BSSes (IBSS/AP/managed)
• contains e.g. basic rate bitmap
• intention: per BSS parameters in case hardware supports

creating/associating with multiple BSSes

Linux Wireless



Linux Wireless

Data structures – ieee80211_key/ieee80211_key_conf

• represents an encryption/decryption key
• ieee80211_key_conf given to driver for hardware acceleration
• ieee80211_key contains internal book-keeping and software

encryption state

Linux Wireless



Linux Wireless

Data structures – ieee80211_tx_info

• most complicated data structure
• lives inside skb’s control buffer (cb)
• goes through three stages (substructure for each)

• initialisation by mac80211 (control)
• use by driver (driver_data/rate_driver_data)
• use for TX status reporting (status)

Linux Wireless



Linux Wireless

Data structures – ieee80211_rx_status

• contains status about a received frame
• passed by driver to mac80211 with a received frame

Linux Wireless



Linux Wireless

Data structures – ieee80211_sub_if_data/ieee80211_vif

• contains information about each virtual interface
• ieee80211_vif is passed to driver for those virtual interfaces the

driver knows about (not monitor, VLAN)
• contains sub-structures depending on mode

• ieee80211_if_ap
• ieee80211_if_wds
• ieee80211_if_vlan
• ieee80211_if_managed
• ieee80211_if_ibss
• ieee80211_if_mesh

Linux Wireless



Linux Wireless

Main flows

• configuration
• receive path
• transmit path
• management/MLME

Linux Wireless



Linux Wireless

Main flows – configuration

• all initiated from userspace (wext or nl80211)
• for managed and IBSS modes: triggers statemachine (on

workqueue)
• some operations passed through to driver more or less directly

(e.g. channel setting (will change), fragmentation threshold)

Linux Wireless



Linux Wireless

Main flows – receive path

• packet received by driver
• passed to mac80211’s rx function (ieee80211_rx) with rx_status

info
• for each interface that the packet might belong to

• RX handlers are invoked
• data: converted to 802.3, delivered to networking stack
• management: delivered to MLME

Linux Wireless



Linux Wireless

Main flows – transmit path

• packet handed to virtual interface’s ieee80211_subif_start_xmit
• converted to 802.11 format
• packed passed to ieee80211_xmit
• transmit handlers run, control information created
• packet given to driver

Note: no more master interface!

Linux Wireless



Linux Wireless

Main flows – transmit pathtransmit handlers

• ieee80211_tx_h_check_assoc
• ieee80211_tx_h_ps_buf
• ieee80211_tx_h_select_key
• ieee80211_tx_h_michael_mic_add
• ieee80211_tx_h_rate_ctrl
• ieee80211_tx_h_misc
• ieee80211_tx_h_sequence
• ieee80211_tx_h_fragment
• ieee80211_tx_h_encrypt
• ieee80211_tx_h_calculate_duration
• ieee80211_tx_h_stats

Linux Wireless



Linux Wireless

Main flows – management/MLME

Linux Wireless



Linux Wireless

Main flows – management/MLME

Linux Wireless



Linux Wireless

Main flows – management/MLME

Ok, so you didn’t want to know that precisely.
• requests from user are translated to internal variables
• state machine runs on user request
• normal procedure:

• probe request/response
• auth request/response
• assoc request/response
• notification to userspace

Linux Wireless



Linux Wireless

Main flows – management/MLME

Also, you don’t need to know that precisely, it’s changing!
• SME will be in cfg80211
• mac80211 just implements auth and assoc functions (auth step

will also do a probe, if necessary)
• userspace notification, wireless extensions, etc. all handled in

cfg80211
• net/mac80211/mlme.c will finally be simplified

Linux Wireless



Linux Wireless

Main flows – management/MLME

Simpler for IBSS:
• try to find IBSS
• join IBSS or create IBSS
• if no peers periodically try to find IBSS to join

Linux Wireless



Linux Wireless

Handoff points

Three main points
• configuration (from userspace)
• mac80211/rate control
• mac80211/driver

Linux Wireless



Linux Wireless

Handoff points – configuration

• Wireless extensions (gone in my private tree!)
• cfg80211 (which userspace talks to via nl80211, wext)

Linux Wireless



Linux Wireless

Handoff points – from mac80211 to rate control

• Rate control is semantically not part of driver
• per-driver selection of rate control algorithm
• rate control fills ieee80211_tx_info rate information
• rate control informed of TX status

Linux Wireless



Linux Wireless

Handoff points – from mac80211 to driver

• many driver methods (ieee80211_ops)
• mac80211 also has a lot of exported functions
• refer to include/net/mac80211.h

Linux Wireless



Linux Wireless

Synchronisation

• config flows: mostly rtnl
• a lot of RCU-based synchronisation (sta_info, key management)
• mutex for interface list management
• spinlocks for various tightly constrained spots like sta list

management, sta_info members etc.
• some more specialised locks

Linux Wireless



Linux Wireless

Quick questions on mac80211?

Linux Wireless



Linux Wireless

RF kill

• handles wifi/bluetooth/wimax/... buttons
• complicated by hard/soft kill differentiation
• complicated by platform vs. wireless card instance
• input handling has a lot of policy in kernel, e.g. EPO block

Linux Wireless



Linux Wireless

RF kill

Reworked rfkill subsystem:
• provides /dev/rfkill as userspace interface
• deprecates input handler in kernel
• only keeps track of per-device rfkill and global default state

Linux Wireless



Linux Wireless

RF kill

rfkill integration with cfg80211:
• interfaces set down on rfkill
• thus mac80211 will no longer try to configure drivers etc.
• interfaces cannot be brought up while rfkilled (new error code:

-ERFKILL)

Linux Wireless



Linux Wireless

Wireless extensions

• all code is in net/wireless/wext.c
• not much code – drivers need to implement a lot
• userspace sets each parameter one by one
• driver tries to work with these parameters
• problem: is the user going to send a BSSID after the SSID?

Linux Wireless



Linux Wireless

Wireless extensions – handoff points

• netdev.wireless_handlers
• contains array of standard and private handlers
• handlers called by userspace via ioctl

• drivers send events via netlink
• a lot already handled in cfg80211 wext-compat
• transparently handled in cfg80211 in my private tree

Linux Wireless



Linux Wireless

cfg80211

• thin layer between userspace and drivers/mac80211
• mainly sanity checking, protocol translations
• thicker than wext – sanity checking, bookkeeping, compat layer,

...

Linux Wireless



Linux Wireless

cfg80211 – nl80211

• userspace access to cfg80211 functionality
• defined in include/linux/nl80211.h
• currently used in userspace by iw, crda, wpa_supplicant, hostapd

Linux Wireless



Linux Wireless

cfg80211 – nl80211device registration

• drivers register a struct wiphy with cfg80211
• this includes hardware capabilities like

• bands and channels
• bitrates per band
• HT capabilites
• supported interface modes

• needs to be done before registering netdevs
• netdev ieee80211_ptr links to registered wiphy

Linux Wireless



Linux Wireless

cfg80211 – nl80211regulatory enforcement (overview)

• still work in progress
• relies on userspace helper (crda) to provide restriction

information
• will update the list of registered channels and (optionally) notify

driver

Linux Wireless



Linux Wireless

cfg80211 – nl80211virtual interface management

• create/remove virtual interfaces
• change type of virtual interfaces (provides wext handler)
• change ‘monitor flags’
• keeps track of interfaces associated with a wireless device
• will set all interfaces down on rfkill
• only one channel for all interfaces – should keep track of that

(TODO)

Linux Wireless



Linux Wireless

cfg80211 – nl80211virtual interface basics

• optional
• mostly for mac80211, though other appropriate uses exist
• only matching PHY parameters possible, all virtual interfaces are

on one channel
• driver responsible for rejecting impossible configurations like

IBSS+IBSS or similar

Linux Wireless



Linux Wireless

cfg80211 – nl80211virtual interface types

• ad-hoc (IBSS)
• managed
• AP and AP_VLAN
• WDS
• mesh point
• monitor

• can set monitor flags: control frames, other BSS frames
• special case: cooked monitor
• cooked monitor sees all frames no other virtual interface

consumed

Linux Wireless



Linux Wireless

cfg80211 – nl80211virtual interface use

• monitor (replacing things like
CONFIG_IPW2200_PROMISCUOUS and module parameter)

• switching modes like with iwconfig
• allow multiple interfaces, combining e.g. WDS and AP for

wireless backhaul
• will also be used for Bluetooth 3 software AMP

Linux Wireless



Linux Wireless

cfg80211 – nl80211scan features

• many more features than wext:
• multiple SSIDs
• channel specification
• allows IE insertion

Linux Wireless



Linux Wireless

Userspacemost common tools

• NetworkManager/connman
• wpa_supplicant
• hostapd
• “userspace SME”

Linux Wireless



Linux Wireless

Userspace – wpa_supplicant

• internally modular architecture, supports multiple backends
• current version supports nl80211, wext no longer required
• current version can try nl80211 and fall back to wext
• actively maintained by Jouni Malinen (Atheros)

Linux Wireless



Linux Wireless

Userspace – hostapd

• implements (almost) the entire AP MLME
• works with mac80211 through nl80211
• requires working radiotap packet injection
• requires many of the nl80211 callbacks
• requires ‘cooked’ monitor interfaces
• actively maintained by Jouni Malinen (Atheros)

Linux Wireless



Linux Wireless

Userspace – “userspace SME”

• API has separate auth/assoc
• needs to support multiple authentications simultaneously (WIP)
• supports adding arbitrary IEs into auth/assoc frames
• together this allows 802.11r
• auth/assoc state machine needed in cfg80211 for wext
• WIP: add SME to cfg80211 for wext (works in my tree)

Linux Wireless



Linux Wireless

Thanks for listening.

Questions?

http://wireless.kernel.org/



Linux Wireless

beacon processing offload

• beacon processing
• beacon miss actions
• signal strength monitoring
• beacon change monitoring

• offload
• don’t use software for above tasks
• have device (firmware) do this
• results in much fewer CPU wakeups

Linux Wireless



Linux Wireless

virtual interfaces

Linux Wireless



Linux Wireless

virtual interfaces

• allow, in theory, multiple network interfaces on single hardware
• for example WDS and AP interfaces (to be bridged)
• for example multiple AP interfaces (multi-BSS)
• any number of monitor interfaces
• any number of AP_VLAN interfaces (to implement multi-SSID

with single BSSID)

Linux Wireless



Linux Wireless

virtual interfaces

relevance to drivers
• drivers need to allow each interface type
• drivers need to support certain operations for certain interface

types
• drivers can support multiple virtual interfaces
• but: drivers not notified of monitor interfaces

Linux Wireless



Linux Wireless

filter flags

• used to configure hardware filters
• best-effort, not all filter flags need to be supported
• best-effort, not all filters need to be supported
• filter flags say which frames to pass to mac80211 – thus a filter

flag is supported if that type of frames passed to mac80211
• passing more frames than requested is always permitted but may

affect performance

Linux Wireless



Linux Wireless

filter flags

monitor interfaces
• handled entirely in mac80211
• may affect filters depending on configuration
• it is possible to create a monitor interface that does not affect

filters, can be useful for debugging (iw phy phy0 interface add
moni0 type monitor flags none)

Linux Wireless



Linux Wireless

Even backup slides end somewhere.


	Introduction
	Architecture
	current
	planned

	
	Recent History

	Architecture
	Data structures
	ieee80211_local/ieee80211_hw
	sta_info/ieee80211_sta
	ieee80211_conf
	ieee80211_bss_conf
	ieee80211_key/ieee80211_key_conf
	ieee80211_tx_info
	ieee80211_rx_status
	ieee80211_sub_if_data/ieee80211_vif

	Main flows
	configuration
	receive path
	transmit path
	management/MLME

	Handoff points
	configuration
	from mac80211 to rate control
	from mac80211 to driver

	Synchronisation
	
	RF kill
	Wireless extensions
	handoff points

	cfg80211
	nl80211

	Userspace
	wpa_supplicant
	hostapd
	``userspace SME''

	
	virtual interfaces
	filter flags
	

