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Introduction

We’ll cover
• mac80211
• rfkill
• wext (and quickly forget about it)
• cfg80211/nl80211
• wpa_supplicant
• hostapd
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Architecture – current

Linux Wireless



Linux Wireless

Architecture – planned
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mac80211
• is a subsystem to the Linux kernel
• implements shared code for soft-MAC/half-MAC wireless

devices
• contains MLME and other code, despite the name
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– Recent History

Some notable additions to mac80211:

HT/aggregation support Intel
802.11s draft support cozybit through o11s.org
802.11w draft support Jouni Malinen (Atheros)
PS (infrastructure mode) Kalle Valo (Nokia)

Vivek Natarajan (Atheros)
beacon processing offload Kalle Valo (Nokia)
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Architecture
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Architectureinternally

• TX/RX paths (including software en-/decryption)
• control paths for managed, IBSS, mesh
• some things for AP (e.g. powersave buffering)
• ...
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Data structures

• ieee80211_local/ieee80211_hw
• sta_info/ieee80211_sta
• ieee80211_conf
• ieee80211_bss_conf
• ieee80211_key/ieee80211_key_conf
• ieee80211_tx_info
• ieee80211_rx_status
• ieee80211_sub_if_data/ieee80211_vif
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Data structures – ieee80211_local/ieee80211_hw

• each instance of these (hw is embedded into local) represents a
wireless device

• ieee80211_hw is the part of ieee80211_local that is visible to
drivers

• contains all operating information about a wireless device
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Data structures – sta_info/ieee80211_sta

• represents any station (peer)
• could be mesh peer, IBSS peer, AP, WDS peer
• would also be used for DLS peer
• ieee80211_sta is driver-visible part
• ieee80211_find_sta for drivers
• lifetime managed mostly with RCU
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Data structures – ieee80211_conf

• hardware configuration
• most importantly - current channel
• intention: hardware specific parameters
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Data structures – ieee80211_bss_conf

• BSS configuration
• for all kinds of BSSes (IBSS/AP/managed)
• contains e.g. basic rate bitmap
• intention: per BSS parameters in case hardware supports

creating/associating with multiple BSSes
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Data structures – ieee80211_key/ieee80211_key_conf

• represents an encryption/decryption key
• ieee80211_key_conf given to driver for hardware acceleration
• ieee80211_key contains internal book-keeping and software

encryption state
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Data structures – ieee80211_tx_info

• most complicated data structure
• lives inside skb’s control buffer (cb)
• goes through three stages (substructure for each)

• initialisation by mac80211 (control)
• use by driver (driver_data/rate_driver_data)
• use for TX status reporting (status)
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Data structures – ieee80211_rx_status

• contains status about a received frame
• passed by driver to mac80211 with a received frame
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Data structures – ieee80211_sub_if_data/ieee80211_vif

• contains information about each virtual interface
• ieee80211_vif is passed to driver for those virtual interfaces the

driver knows about (not monitor, VLAN)
• contains sub-structures depending on mode

• ieee80211_if_ap
• ieee80211_if_wds
• ieee80211_if_vlan
• ieee80211_if_managed
• ieee80211_if_ibss
• ieee80211_if_mesh

Linux Wireless



Linux Wireless

Main flows

• configuration
• receive path
• transmit path
• management/MLME
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Main flows – configuration

• all initiated from userspace (wext or nl80211)
• for managed and IBSS modes: triggers statemachine (on

workqueue)
• some operations passed through to driver more or less directly

(e.g. channel setting (will change), fragmentation threshold)
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Main flows – receive path

• packet received by driver
• passed to mac80211’s rx function (ieee80211_rx) with rx_status

info
• for each interface that the packet might belong to

• RX handlers are invoked
• data: converted to 802.3, delivered to networking stack
• management: delivered to MLME
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Main flows – transmit path

• packet handed to virtual interface’s ieee80211_subif_start_xmit
• converted to 802.11 format
• packed passed to ieee80211_xmit
• transmit handlers run, control information created
• packet given to driver

Note: no more master interface!

Linux Wireless



Linux Wireless

Main flows – transmit pathtransmit handlers

• ieee80211_tx_h_check_assoc
• ieee80211_tx_h_ps_buf
• ieee80211_tx_h_select_key
• ieee80211_tx_h_michael_mic_add
• ieee80211_tx_h_rate_ctrl
• ieee80211_tx_h_misc
• ieee80211_tx_h_sequence
• ieee80211_tx_h_fragment
• ieee80211_tx_h_encrypt
• ieee80211_tx_h_calculate_duration
• ieee80211_tx_h_stats
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Main flows – management/MLME
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Main flows – management/MLME
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Main flows – management/MLME

Ok, so you didn’t want to know that precisely.
• requests from user are translated to internal variables
• state machine runs on user request
• normal procedure:

• probe request/response
• auth request/response
• assoc request/response
• notification to userspace
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Main flows – management/MLME

Also, you don’t need to know that precisely, it’s changing!
• SME will be in cfg80211
• mac80211 just implements auth and assoc functions (auth step

will also do a probe, if necessary)
• userspace notification, wireless extensions, etc. all handled in

cfg80211
• net/mac80211/mlme.c will finally be simplified
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Main flows – management/MLME

Simpler for IBSS:
• try to find IBSS
• join IBSS or create IBSS
• if no peers periodically try to find IBSS to join
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Handoff points

Three main points
• configuration (from userspace)
• mac80211/rate control
• mac80211/driver
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Handoff points – configuration

• Wireless extensions (gone in my private tree!)
• cfg80211 (which userspace talks to via nl80211, wext)
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Handoff points – from mac80211 to rate control

• Rate control is semantically not part of driver
• per-driver selection of rate control algorithm
• rate control fills ieee80211_tx_info rate information
• rate control informed of TX status

Linux Wireless



Linux Wireless

Handoff points – from mac80211 to driver

• many driver methods (ieee80211_ops)
• mac80211 also has a lot of exported functions
• refer to include/net/mac80211.h
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Synchronisation

• config flows: mostly rtnl
• a lot of RCU-based synchronisation (sta_info, key management)
• mutex for interface list management
• spinlocks for various tightly constrained spots like sta list

management, sta_info members etc.
• some more specialised locks
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Quick questions on mac80211?
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RF kill

• handles wifi/bluetooth/wimax/... buttons
• complicated by hard/soft kill differentiation
• complicated by platform vs. wireless card instance
• input handling has a lot of policy in kernel, e.g. EPO block
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RF kill

Reworked rfkill subsystem:
• provides /dev/rfkill as userspace interface
• deprecates input handler in kernel
• only keeps track of per-device rfkill and global default state
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RF kill

rfkill integration with cfg80211:
• interfaces set down on rfkill
• thus mac80211 will no longer try to configure drivers etc.
• interfaces cannot be brought up while rfkilled (new error code:

-ERFKILL)
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Wireless extensions

• all code is in net/wireless/wext.c
• not much code – drivers need to implement a lot
• userspace sets each parameter one by one
• driver tries to work with these parameters
• problem: is the user going to send a BSSID after the SSID?
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Wireless extensions – handoff points

• netdev.wireless_handlers
• contains array of standard and private handlers
• handlers called by userspace via ioctl

• drivers send events via netlink
• a lot already handled in cfg80211 wext-compat
• transparently handled in cfg80211 in my private tree
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cfg80211

• thin layer between userspace and drivers/mac80211
• mainly sanity checking, protocol translations
• thicker than wext – sanity checking, bookkeeping, compat layer,

...
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cfg80211 – nl80211

• userspace access to cfg80211 functionality
• defined in include/linux/nl80211.h
• currently used in userspace by iw, crda, wpa_supplicant, hostapd
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cfg80211 – nl80211device registration

• drivers register a struct wiphy with cfg80211
• this includes hardware capabilities like

• bands and channels
• bitrates per band
• HT capabilites
• supported interface modes

• needs to be done before registering netdevs
• netdev ieee80211_ptr links to registered wiphy
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cfg80211 – nl80211regulatory enforcement (overview)

• still work in progress
• relies on userspace helper (crda) to provide restriction

information
• will update the list of registered channels and (optionally) notify

driver
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cfg80211 – nl80211virtual interface management

• create/remove virtual interfaces
• change type of virtual interfaces (provides wext handler)
• change ‘monitor flags’
• keeps track of interfaces associated with a wireless device
• will set all interfaces down on rfkill
• only one channel for all interfaces – should keep track of that

(TODO)
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cfg80211 – nl80211virtual interface basics

• optional
• mostly for mac80211, though other appropriate uses exist
• only matching PHY parameters possible, all virtual interfaces are

on one channel
• driver responsible for rejecting impossible configurations like

IBSS+IBSS or similar
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cfg80211 – nl80211virtual interface types

• ad-hoc (IBSS)
• managed
• AP and AP_VLAN
• WDS
• mesh point
• monitor

• can set monitor flags: control frames, other BSS frames
• special case: cooked monitor
• cooked monitor sees all frames no other virtual interface

consumed
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cfg80211 – nl80211virtual interface use

• monitor (replacing things like
CONFIG_IPW2200_PROMISCUOUS and module parameter)

• switching modes like with iwconfig
• allow multiple interfaces, combining e.g. WDS and AP for

wireless backhaul
• will also be used for Bluetooth 3 software AMP
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cfg80211 – nl80211scan features

• many more features than wext:
• multiple SSIDs
• channel specification
• allows IE insertion
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Userspacemost common tools

• NetworkManager/connman
• wpa_supplicant
• hostapd
• “userspace SME”

Linux Wireless



Linux Wireless

Userspace – wpa_supplicant

• internally modular architecture, supports multiple backends
• current version supports nl80211, wext no longer required
• current version can try nl80211 and fall back to wext
• actively maintained by Jouni Malinen (Atheros)
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Userspace – hostapd

• implements (almost) the entire AP MLME
• works with mac80211 through nl80211
• requires working radiotap packet injection
• requires many of the nl80211 callbacks
• requires ‘cooked’ monitor interfaces
• actively maintained by Jouni Malinen (Atheros)
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Userspace – “userspace SME”

• API has separate auth/assoc
• needs to support multiple authentications simultaneously (WIP)
• supports adding arbitrary IEs into auth/assoc frames
• together this allows 802.11r
• auth/assoc state machine needed in cfg80211 for wext
• WIP: add SME to cfg80211 for wext (works in my tree)
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Thanks for listening.

Questions?

http://wireless.kernel.org/
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beacon processing offload

• beacon processing
• beacon miss actions
• signal strength monitoring
• beacon change monitoring

• offload
• don’t use software for above tasks
• have device (firmware) do this
• results in much fewer CPU wakeups
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virtual interfaces
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virtual interfaces

• allow, in theory, multiple network interfaces on single hardware
• for example WDS and AP interfaces (to be bridged)
• for example multiple AP interfaces (multi-BSS)
• any number of monitor interfaces
• any number of AP_VLAN interfaces (to implement multi-SSID

with single BSSID)
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virtual interfaces

relevance to drivers
• drivers need to allow each interface type
• drivers need to support certain operations for certain interface

types
• drivers can support multiple virtual interfaces
• but: drivers not notified of monitor interfaces
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filter flags

• used to configure hardware filters
• best-effort, not all filter flags need to be supported
• best-effort, not all filters need to be supported
• filter flags say which frames to pass to mac80211 – thus a filter

flag is supported if that type of frames passed to mac80211
• passing more frames than requested is always permitted but may

affect performance
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filter flags

monitor interfaces
• handled entirely in mac80211
• may affect filters depending on configuration
• it is possible to create a monitor interface that does not affect

filters, can be useful for debugging (iw phy phy0 interface add
moni0 type monitor flags none)
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Even backup slides end somewhere.
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