

STSW45x0C LMAC API
ED1P4

STSW45x0C LMAC API ED1P4

 Document history

Date Author Description

ED1P1 10th March 2008 WLAN BU Initial Draft of LMAC API document
ED1P2 31st March 2008 WLAN BU Incorporated review comments.
ED1P3 18th July 2008 WLAN BU Some additional changes.
ED1P4 4th September, 2008 WLAN BU Edited Legal Notice

 Legal notices

© Copyright 2008 STMicroelectronics.

This document contains information which is © Copyright 2007 Conexant Systems Inc.

Permission to use, copy and distribute this document, in whole only and only in conjunction with the
product STLC4560 LMAC API header file, is hereby granted, provided that the above copyright notice
appears with this notice in all copies made. No resale use may be made of this document or its contents
without specific, prior written permission of STMicroelectronics. All other rights reserved.

The ST logo is a registered trademark of STMicroelectronics. The names and logos of STMicroelectronics
may not be used without specific, prior written permission of STMicroelectronics.

STMicroelectronics and its licensors make no representation whatsoever about the suitability of this
document and any information contained therein for any purpose. While information furnished herein is
believed to be accurate and reliable, this document and its contents are provided on a strict 'as-is' and 'as
available' basis. STMicroelectronics disclaims all warranties, express or implied related to this document
and its contents, including but not limited to implied warranties of completeness, truth, accuracy,
merchantability, fitness for a particular purpose and non-infringement, and assumes no responsibility or
liability for the consequences of the use or inability to use such information or for any infringement of
patents or other rights of third parties which may result there from. No license is granted by implication or
otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of STMicroelectronics.

For selected STMicroelectronics sales offices fax: France +33 1 47407910; Germany +49 89 4605454;
Italy +39 02 8250449; Japan +81 3 57838216; Singapore +65 4820240; Sweden +46 8 7504950;
Switzerland +41 22 9292900; United Kingdom and Eire +44 1628 890391; USA +1 781 861 2678

 STSW45x0C LMAC API Page 2/29

STSW45x0C LMAC API ED1P4

Index
1 Scope... 4

1.1 Document Overview .. 4
2 Interconnect... 5

2.1 Basic types and compiler settings .. 5
2.2 LMAC description ... 5
2.3 LMAC Headers .. 6

2.3.1 Generic properties ... 6
2.3.2 Control format... 7
2.3.3 Data format ... 7

2.4 Objects ... 10
2.4.1 Actions .. 10
2.4.2 Configuration objects .. 14
2.4.3 Frame management objects ... 17
2.4.4 Statistics .. 18
2.4.5 Hardware... 19

3 Interfaces & mechanisms .. 20
3.1 Object management.. 20
3.2 LMAC and BSS setup and synchronization... 20

3.2.1 Initial setup.. 20
3.2.2 Setup ... 20

3.3 Frame transmission .. 21
3.3.1 Transmission ... 21
3.3.2 Feedback ... 21
3.3.3 Cancellation .. 21
3.3.4 Bursting... 21
3.3.5 Encryption... 21

3.4 Frame reception.. 22
3.4.1 Frame matching... 22
3.4.2 Decryption... 22

3.5 PSM ... 23
3.5.1 Client mode ... 23

3.6 Scanning... 24
3.6.1 Probe requests ... 24

3.7 Filtering.. 24
3.7.1 Multicast Filtering... 24
3.7.2 ARP Filtering .. 25

3.8 Statistics ... 25
3.8.1 Noise histogram .. 25

 STSW45x0C LMAC API Page 3/29

STSW45x0C LMAC API ED1P4

1 Scope
This document defines the LMAC Application Programmers Interface (API).

1.1 Document Overview

Section 2 of this document defines the LMAC data formats, structures and objects. Section 3 uses these definitions
to describe the various interconnect mechanisms, initialization, setup, frame transmission and reception, PSM,
scanning, etc.

 STSW45x0C LMAC API Page 4/29

STSW45x0C LMAC API ED1P4

2 Interconnect

2.1 Basic types and compiler settings

The LMAC API is defined by the following basic types:

int8_t Signed 8 bit type.

int16_t Signed 16 bit type.

int32_t Signed 32 bit type.

int64_t Signed 64 bit type.

uint8_t Unsigned 8 bit type.

uint16_t Unsigned 16 bit type.

uint32_t Unsigned 32 bit type.

uint64_t Unsigned 64 bit type.

All structures that may appear in arrays are padded to be a multiple of 32 bits in length. The compiler that
compiles an application that uses the API shall be configured to round structures to multiples of 32 bit.

2.2 LMAC description

The properties of the LMAC are described by the following structure:

struct s_lm_descr
{
 uint16_t modes;
 uint16_t flags;
 uint32_t buffer_start;
 uint32_t buffer_end;
 uint8_t header;
 uint8_t trailer;
 uint8_t tx_queues;
 uint8_t tx_depth;
 uint8_t privacy;
 uint8_t rx_keycache;
 uint8_t tim_size;
 uint8_t pad1;
 uint8_t rates[16];
 uint32_t link;
 uint16_t mtu;
};

modes Bit-mask with supported LMAC modes.

flags SoftMAC LMAC-UMAC interface definitions.
Currently, only LM_DESCR_FLAG_SHMEM is
supported

buffer_start Start address of application managed
buffer.

 STSW45x0C LMAC API Page 5/29

STSW45x0C LMAC API ED1P4

buffer_end End address of application managed
buffer.

header Minimal LMAC required header space.

trailer Minimal LMAC required trailer space.

tx_queues Number of supported (E)DCF Tx queues.

tx_depth Maximum Tx queue depth.

privacy Bit-mask with supported LMAC privacy
acceleration engines.

rx_keycache Decryption key cache size.

tim_size Maximum TIM size in bytes.

rates PHY supported rates in ascending order.

link Single-Chip SoftMAC LMAC-UMAC link

mtu Maximum Transmission Unit

The modes bitmask describes the mode supported by the LMAC. The values of the LM_MODE_... enumeration
correspond to the bit-numbers in the bit-mask.
The LMAC implements a fixed buffer that is managed by the application. The application must use this to store
transmission related structure and data in, such as frames and configuration objects. The application must also
configure the part the LMAC must use as receive buffer. The address of the buffer and (implicitly) the buffer’s
size are specified by buffer_start and buffer_end. The header member specifies the minimum space
required to be reserved for the LMAC to maintain private structures in. The application must reserve this heading
space for each frame, object or other entity it stores in the application managed buffer.
The LMAC at least supports 5 queues (beacon, scan, management, multicast/broadcast and data queues.
Additional priorities queues may be available.
The LMAC may support hardware acceleration for certain privacy mechanisms. The privacy bitmask describes
the privacy mechanisms supported by the LMAC. The following bits are defined:

• LM_PRIVACC_WEP: WEP accelerator present;
• LM_PRIVACC_TKIP: TKIP accelerator present (requires LM_PRIVACC_WEP);
• LM_PRIVACC_MICHAEL: MICHAEL accelerator present (requires LM_PRIVACC_WEP and

LM_PRIVACC_TKIP);
• LM_PRIVACC_CCX_KP: CCX Key Protocol (requires LM_PRIVACC_WEP).
• LM_PRIVACC_CCX_MIC: CCX MIC
• LM_PRIVACC_AES_CCMP: AES CCMP supported.

The LMAC implements a fixed receive/decrypt key cache. The application is responsible for managing and
updating the cache. If the frame cannot be decrypted by the LMAC (cache-miss), the frame is passed
undecrypted and the application can change the cache’s contents if necessary.

2.3 LMAC Headers

2.3.1 Generic properties

Each LMAC header structure starts with a handle and a flags member. The handle is opaque to the LMAC.
The handle is returned to the application for operations that result in a response or feedback and may be used by
the application to match the response to the request. The LMAC uses the LM_FLAG_CONTROL flag of this
member to determine whether the header represents a control or data header.
Frames submitted to the application may be unaligned, or may become unaligned due to changes to the frame’s
header. However, certain LMAC – application implementations require that the structures are aligned before they
are submitted to the LMAC. In this case, the application or the LMAC may set the LM_FLAG_ALIGN flag to

 STSW45x0C LMAC API Page 6/29

STSW45x0C LMAC API ED1P4

indicate that the first byte of the data part of the control structure and data structure contains the number of
padding bytes (including the number) heading the actual data.

2.3.2 Control format

Structure
Struct s_lm_control
{
 uint16_t flags;
 uint16_t length;
 uint32_t handle;
 uint16_t oid;
 uint16_t pad;
 /* uint8_t data[]; */
};
flags One of the following flags;

• LM_CTRL_OPSET: if set the operation is a
set, a get otherwise. A trap also sets
this flag, as opposed to a get response.

LM_FLAG_CONTROL is always set.
length Length of data part
handle LMAC opaque application handle.
oid Object Identifier
data Object data

2.3.3 Data format
union u_lm_data
{
 struct s_lm_data_out out;
 struct s_lm_data_in in;
};

• Outgoing data

struct s_lm_data_out
{
 uint16_t flags;
 uint16_t length;
 uint32_t handle;
 uint16_t aid;
 uint8_t rts_retries;
 uint8_t retries;
 uint8_t aloft[8];
 uint8_t aloft_ctrl;
 uint8_t crypt_offset;
 uint8_t keytype;
 uint8_t keylen;
 uint8_t key[16];
 uint8_t queue;
 uint8_t backlog;
 uint16_t durations[4];
 uint8_t antenna;
 uint8_t cts;
 int16_t power;
 uint8_t pad[2];
 /*uint8_t data[];*/
};

 STSW45x0C LMAC API Page 7/29

STSW45x0C LMAC API ED1P4

flags Frame transmission properties

• LM_OUT_PROMISC: send frame without
protocol interference. The rate at
which the frame is sent, is the rate
specified by the first entry of the
aloft member.

• LM_OUT_TIMESTAMP: send frame and insert
TSF synchronized timestamp at
appropriate offset. (optional)

• LM_OUT_SEQNR: the frame’s sequence
number has already been set by the
application.

• LM_OUT_BURST: frame may be used to
start a burst, of length configured by
the EDCF object’s maxburst member

• LM_OUT_NOCANCEL: prevent PSM automatic
cancelation for this frame.

• LM_OUT_CLEARTIM: clears TIM for frame’s
aid.

• LM_OUT_HITCHHIKE: hitchhike this frame
on an SIFS response to a QoS data frame
as a QoS data + acknowledgment frame,
irrespective whether QoS poll is set.

• LM_OUT_COMPRESS: frame is eligible for
compression.

• LM_OUT_CONCAT: frame is eligible for
concatenation.

• LM_OUT_PCS_ACCEPT: frame is eligible
for MCDLP

LM_FLAG_CONTROL is always cleared.
length Length of the data part.
handle LMAC opaque application handle.
aid AID corresponding to the destination of the

frame.
rts_retries Maximum number of RTS attempts for each

transmission attempt that requires an RTS.
retries Maximum number of transmission attempts for

this frame
aloft ALOFt array with bit-rate, preamble and

RTS/CTS-to-self options for first 8
transmission attempts. Each entry consists of
a rate index and one of the following flags;

• LM_ALOFT_RTS: use RTS/CTS.

• LM_ALOFT_CTS: use CTS-to-self.

• LM_ALOFT_SP: use Short Preamble.

• LM_ALOFT_MASK:

• LM_ALOFT_RATE:
aloft_ctrl Index in Aloft control array as configured by

BSS setup object. The index determines the
rate and preamble settings for the initial
attempt of a RTS or CTS-to-self.

crypt_offset Specifies the offset at which the frame must

 STSW45x0C LMAC API Page 8/29

STSW45x0C LMAC API ED1P4

be in-frame encrypted with the privacy
mechanism and key specified.

keytype Encryption key type

• LM_PRIV_NONE

• LM_PRIV_WEP

• LM_PRIV_TKIP

• LM_PRIV_TKIPMICHAEL

• LM_PRIV_CCX_WEPMI C

• LM_PRIV_CCX_KPMIC

• LM_PRIV_CCX_KP

• LM_PRIV_AES_CCMP
keylen Encryption key length

key Encryption key

queue Queue number. The following fixed queues are
defined;

• LM_QUEUE_BEACON

• LM_QUEUE_SCAN

• LM_QUEUE_MGT

• LM_QUEUE_MCBC

• LM_QUEUE_DATA

• LM_QUEUE_DATA0..3
backlog Number of backlogged frames for given queue.

durations Durations of first 4 backlogged frames for
given queue.

antenna Preferred transmission antenna.

cts cts rate

power Unused.

• Incoming data

struct s_lm_data_in
{
 uint16_t flags;
 uint16_t length;
 uint16_t frequency;
 uint8_t antenna;
 uint8_t rate;
 uint8_t rcpi;
 uint8_t sq;
 uint8_t decrypt;
 uint8_t rssi_raw;
 uint32_t clock[2];
 /*uint8_t data[];*/
};

flags Frame receive properties;

• LM_IN_FCS_GOOD: FCS matched.
• LM_IN_MATCH_MAC: address1 matches local

 STSW45x0C LMAC API Page 9/29

STSW45x0C LMAC API ED1P4

mac address.
• LM_IN_MCBC: multicast/broadcast bit set.
• LM_IN_BEACON: frame is a beacon frame.
• LM_IN_MATCH_BSS: bssid matches local

bssid.
• LM_IN_BCAST_BSS: bssid is broadcast

address.
• LM_IN_DATA: frame contains data.
• LM_IN_TRUNCATED: frame is truncated.
• LM_IN_TRANSPARENT:

length Length of data part.
frequency Frequency in MHz on which the frame is received
antenna Antenna on which the frame is received.
rate Rate index of rate on which the frame is

received
rcpi Received Channel Power Indicator, as returned

by the hardware. Conversion in dBm must be done
by the application.

sq Signal Quality (optional)
decrypt Decrypt status;

• LM_DECRYPT_NONE: no decryption required
• LM_DECRYPT_OK: decrypted correctly
• LM_DECRYPT_NOKEY: not decrypted because

key-cache lacked proper key.
• LM_DECRYPT_NOMICHAEL: decrypted, but no

Michael not verified.
• LM_DECRYPT_NOCKIPMIC:
• LM_DECRYTP_FAIL_WEP: decrypted WEP

engine, ICV failed (note that WEP is also
used for TKIP decryption).

• LM_DECRYPT_FAIL_TKIP: decrypted, TKIP
sequence check failed.

• LM_DECRYPT_FAIL_MICHAEL: decrypted, but
Michael failed.

• LM_DECRYPT_FAIL_CKIPKP:
• LM_DECRYPT_FAIL_CKIPMIC:
• LM_DECRYPT_FAIL_AESCCMP:

clock μsec accurate timestamp of hardware clock at
end of frame (before OFDM SIFS EOF padding)

2.4 Objects

2.4.1 Actions

• Setup

 STSW45x0C LMAC API Page 10/29

STSW45x0C LMAC API ED1P4

Object
LM_OID_SETUP

struct s_lmo_setup
{
 uint16_t flags;
 uint8_t macaddr[6];
 uint8_t bssid[6];
 uint8_t antenna;
 uint8_t rx_align;
 uint32_t rx_buffer;
 uint16_t rx_mtu;
 uint16_t frontend;
 uint16_t timeout;
 uint16_t truncate;
 uint32_t bratemask;
 uint8_t sbss_offset;
 uint8_t mcast_window;
 uint8_t rx_rssi_threshold;
 uint8_t rx_ed_threshold;
 uint32_t ref_clock;
 uint16_t lpf_bandwidth;
 uint16_t osc_start_delay ;
} ;

flags BSS setup flags;

• LM_SETUP_INFRA

• LM_SETUP_IBSS

• LM_SETUP_AP

• LM_SETUP_TRANSPARENT (optional)

• LM_SETUP_PROMISCUOUS

• LM_SETUP_HIBERNATE

• LM_SETUP_NOACK
macaddr LMAC MAC address
bssid BSSID of the BSS for low level frame filtering

purposes. Set to FF-FF-FF-FF-FF if the LMAC is
not associated with any BSS.

antenna Receive antenna:

• LM_ANTENNA_0

• LM_ANTENNA_1

• LM_ANTENNA_DIVERSITY
rx_align Alignment for received frames. 0 disables

receive alignment, 1 to 4 specifies the
alignment of the frame’s data body –
independent of the frame’s MAC header length.
Alignment is achieved by adding padding bytes
and using the LM_FLAG_ALIGN flag.

rx_buffer Address of receive buffer (ignored after
initial setup).

rx_mtu Maximum Transmission Unit for reception.
frontend Frontend configuration (1 is default). Defined

numbers are:

• LM_FRONTEND_DUETTE3,

• LM_FRONTEND_DUETTE2,

 STSW45x0C LMAC API Page 11/29

STSW45x0C LMAC API ED1P4

• LM_FRONTEND_FRISBEE,

• LM_FRONTEND_CROSSBOW,

• LM_FRONTEND_LONGBOW
timeout Beacon timeout in kμsec. If no beacons are

received within the given period, the
LM_TRAP_NO_BEACON trap is generated.

truncate Truncate length of frames for which none of the
LM_IN_MATCH_MAC, LM_IN_MATCH_MCBC, or
LM_IN_MATCH_BSS flags is set1. Truncated frames
are marked by LM_IN_TRUNCATED.

bratemask Basic rate mask.
sbss_offset Sequential BSS parameter (deprecated)
mcast_window Sequential BSS parameter (deprecated)
rx_rssi_threshold Received frames with a RSSI below the specified

threshold shall be discarded in the LMAC. The
value is in hardware-dependent units, and the
UMAC needs to convert the dBm value to a RSSI
value using the RSSI calibration data.

rx_ed_threshold Hardware dependent value to set the
corresponding baseband register. Not applied if
0.

ref_clock Clock frequency of the reference oscillator.
lpf_bandwidth
osc_start_delay Minimum delay for the start of Oscillator.

Access
Write

Description
Configures the LMAC setup.
LM_SETUP_INFRA configures the LMAC in client infrastructure mode.
LM_SETUP_IBSS configures the LMAC in client IBSS mode.
The LM_SETUP_INFRA and LM_SETUP_IBSS flags are mutually exclusive.
LM_SETUP_TRANSPARENT flag configures the receive frame filter to pass all frames without regard
to type and address matching. Frames are still responded to as if in normal operation.
The LM_SETUP_PROMISCUOUS flag configures the EDCF to run in promiscuous mode where all
received frames are passed without filtering or acknowledgement. Note that to sent frames in
promiscuous mode, the LM_OUT_PROMISC flags must be used when sending the frame.
The LM_SETUP_TRANSPARENT and LM_SETUP_PROMISCUOUS flags are mutually exclusive.
LM_SETUP_HIBERNATE configures the LMAC to go into a low power mode and refrain from
participating in any BSS.
LM_SETUP_NOACK configures the LMAC to not send ACK frames to any frame types.
LM_SETUP_TIMESLICE enables the time-slicing mechanism.

• Scan

Object

LM_OID_SCAN

1 Note that this is only useful when the LMAC is setup with either LM_SETUP_TRANSPARENT or LM_SETUP_PROMISCUOUS

flags set.

 STSW45x0C LMAC API Page 12/29

STSW45x0C LMAC API ED1P4

struct s_lmo_scan
{
 uint16_t flags;
 uint16_t dwell;
 uint8_t channel[292];
 uint32_t bratemask;
 uint8_t aloft[8];
 uint8_t rssical[8];
};

flags Scanning flags, one of the following;

• LM_SCAN_EXIT: exit from scanning to
mode and change to the given frequency
after the dwell time expires.

• LM_SCAN_TRAP: generate a trap after the
dwell time expires.

• LM_SCAN_ACTIVE: active scan by sending
a probe request on the specified
frequency.

• LM_SCAN_FILTER: turn on the “japan-
filter”.

dwell Dwell time interval in units of kμsec after

which a trap is generated.
channel Channel data (calibration data).
bratemask Basic rate mask (relative to rate indexing).
aloft ALOFt control array, sets the basic rate

retry pattern for RTS.
rssical RSSI calibration data

Access

Write

Description
Instruct the LMAC to change frequency and scan on a specified frequency.

• Trap

Object
LM_OID_TRAP

struct s_lmo_trap
{
 uint16_t event;
 uint16_t frequency;
};

event Numbered LMAC event. Currently defined

numbers;

• LM_TRAP_SCAN

• LM_TRAP_TIMER

• LM_TRAP_BEACON_TX

• LM_TRAP_FAA_RADIO_ON

 STSW45x0C LMAC API Page 13/29

STSW45x0C LMAC API ED1P4

• LM_TRAP_FAA_RADIO_OFF

• LM_TRAP_RADAR

• LM_TRAP_NO_BEACON

• LM_TRAP_TBTT

• LM_TRAP_SCO_ENTER

• LM_TRAP_SCO_EXIT
frequency Synthesizer frequency at the moment the trap

is generated. Important for RADAR traps.

Access
Trap

Description
Generic trap object for signalling LMAC events.

• Timer

Object

LM_OID_TIMER

struct s_lmo_timer
{
 uint32_t interval;
};
interval Specifies the interval in units of kμsec after

which a trap with event number LM_TRAP_TIMER
must be generated.

Access
Write

Description
Generic mechanism for generating an accurately timed LMAC trap.

• NAV

Object
LM_OID_NAV

Struct s_lmo_nav
{
 uint32_t period;
};
period Specifies a period of time in units of μsec

during which the LMAC must set an internal NAV.

Access
Write

Description
Generic mechanism for suspending transmissions for a given period.

2.4.2 Configuration objects

• EDCF settings

 STSW45x0C LMAC API Page 14/29

STSW45x0C LMAC API ED1P4

Object
LM_OID_EDCF
struct s_lmo_edcf
{
 uint8_t flags;
 uint8_t slottime;
 uint8_t sifs;
 uint8_t eofpad;
 struct s_lmo_edcf_queue
 {
 uint8_t aifs;
 uint8_t pad0;
 uint16_t cwmin;
 uint16_t cwmax;
 uint16_t txop;
 } queues[8];
 uint8_t mapping[4];
 uint16_t maxburst;
 uint16_t round_trip_delay;
};

flags EDCF flags
slottime EDCF slottime in μsec
sifs EDCF SIFS time
eofpad 802.11g OFDM End of Frame SIFS pad
aifs AIFS settings per queue
cwmin CWmin settings per queue
cwmax CWmax settings per queue
txop Maximum burst duration
mapping[4] Maps the LMAC queues for beacons, probes, etc…

to EDCF queues.
maxburst Not used.
round_trip_delay Extra roundtrip-delay for long-distance links.

Access
 Write

Description

Configures the EDCF setup.

• Key cache settings

Object
LM_OID_KEYCACHE

struct s_lmo_keycache
{
 uint8_t entry;
 uint8_t keyid;
 uint8_t address[6];
 uint8_t pad[2];
 uint8_t keytype;
 uint8_t keylen;
 uint8_t key[24];
};

entry Entry in cache to update

keyid Privacy key identifier

 STSW45x0C LMAC API Page 15/29

STSW45x0C LMAC API ED1P4

address Address of station to which the key belongs

keytype Decryption key type

• LM_PRIV_NONE,

• LM_PRIV_WEP,

• LM_PRIV_TKIP,

• LM_PRIV_TKIPMICHAEL,

• LM_PRIV_CCX_WEPMIC,

• LM_PRIV_CCX_KPMIC,

• LM_PRIV_CCX_KP,

• LM_PRIV_AES_CCMP

keylen Decryption key length

Key Decryption key data

• PSM

Object
LM_OID_PSM

struct s_lmo_psm
{
 uint16_t flags;
 uint16_t aid;
 struct s_lm_interval
 {
 uint16_t interval;
 uint16_t periods;
 } intervals[4];
 uint8_t beacon_rcpi_skip_max;
 uint8_t rcpi_delta_threshold;
 uint8_t nr;
 uint8_t exclude[1];
};

flags PSM behaviour flags;

• LM_PSM: enter PSM mode.

• LM_PSM_MCBC: pass beacons and stay awake
for received group addressed frames.

• LM_PSM_CHECKSUM: calculate checksum and
wake-up application only if the checksum
changes.

• LM_PSM_DTIM:
aid AID to monitor TIM bit for. Pass beacon frame

if corresponding TIM bit is set.
interval Listen interval in Beacon periods.
period Number of listen intervals before switching to

the next set of listen intervals in the list.
beacon_rcpi_skip_max The number of Beacon’s to be skipped.
rcpi_delta_threshold It’s the threshold value between current beacon

rssi and last trapped beacon rssi.
nr Number of element identifiers in exclude list.
exclude Identifiers of elements to exclude from

 STSW45x0C LMAC API Page 16/29

STSW45x0C LMAC API ED1P4

checksum calculation.

Access
Write

Description
Configures the LMAC client PSM behaviour.

2.4.3 Frame management objects

• Tx cancel

Object

LM_OID_TXCANCEL

struct s_lmo_txcancel
{
 uint32_t address[1];
};
address Array of addresses of frames in the application

managed buffer. Array shall at least hold one
entry.

Access

Write

Description
Cancels frames on the LMAC.

• Tx feedback

Object

LM_OID_TX

struct s_lmo_tx
 {
 uint8_t flags;
 uint8_t retries;
 uint8_t rcpi;
 uint8_t sq;
 uint16_t seqctrl;
 uint8_t antenna;
 uint8_t pad;
 };

flags Feedback flags

• LM_TX_FAILED: frame was exhaustively
retried or cancelled.

• LM_TX_PSM: PSM bit was set upon
transmission by the LMAC.

• LM_TX_PSM_CANCELLED: frame was cancelled
by the automatic PSM cancellation
mechanism.

retries Number of retries needed before frame was

 STSW45x0C LMAC API Page 17/29

STSW45x0C LMAC API ED1P4

successfully transmitted or cancelled.
rcpi Received Channel Power Indicator, on

acknowledgement frame, if frame was
successfully transmitted. Conversion in dBm
must be done by the application.

sq Signal Quality on acknowledgment (optional).
seqctrl Sequence Control field of the cancelled frame.
antenna Antenna over which the frame was successfully

transmitted.

Access
 Trap

Description

 Feedback trap of frame transmission mechanism.

• Burst update

Object

LM_OID_BURST

struct s_lmo_burst
{
 uint8_t flags;
 uint8_t queue;
 uint8_t backlog;
 uint8_t pad;
 uint16_t durations[32];
};
flags TBD
queue Queue number
backlog Number of backlogged frames for given queue
durations[32] Durations of up-to 32 backlogged frames for

given queue

Access
 Write

Description

 Update object for bursting.

2.4.4 Statistics

• LMAC statistics

Object

LM_OID_STATS

struct s_lmo_stats
{
 uint32_t valid;
 uint32_t fcs;
 uint32_t abort;
 uint32_t phyabort;
 uint32_t rts_success;
 uint32_t rts_fail;
 uint32_t timestamp;
 uint32_t time_tx;

 STSW45x0C LMAC API Page 18/29

STSW45x0C LMAC API ED1P4

 uint32_t noisefloor;
 uint32_t sample_noise[8];
 uint32_t sample_cca;
 uint32_t sample_tx;
};

valid Frames received with a valid FCS.
fcs Frames received with an invalid FCS.
abort Partially received frames.
phyabort Frame receptions aborted based on the PHY

header.
rts_success The number of CTS frames is received in

response to an RTS.
rts_fail The number of RTS frames for which no response

CTS frame was received.
timestamp Timestamp at the time the snapshot was taken.
time_tx Total time the LMAC transmitted.
noisefloor The baseband’s noisefloor reading at the moment

the OID is requested.
sample_noise Number of RSSI samples per power category.
sample_cca Number of samples with CCA high.
sample_tx Number of samples during which the LMAC

transmitted.

Access
Read

Description
LMAC statistics.

2.4.5 Hardware

• LED behaviour

Object

LM_OID_LED

struct s_lmo_led
{
 uint16_t flags;
 uint16_t mask[2];
 uint16_t delay/*[2]*/;
};

flags Bitmask that specifies whether a LED is derived

from its hardware function (0) or by software
(1).

mask Array of LED bitmasks.
delay Delays in kμsec between setting mask[0] and

mask[1] (delay[0]), and switching mask[1] to
mask[0] (delay[1]). Use delay[1] = 0 to for
single-shot changes.

 STSW45x0C LMAC API Page 19/29

STSW45x0C LMAC API ED1P4

Access
Write

Description
Each supported LED is represented by a bit in flags member and the two mask members. The flags
member specifies whether the LED is derived from its hardware function, or set by the software mask.
The software masks specify the state of LED initially (mask[0]), and after the first delay expired
(mask[1]). The optional second delay specifies the time span after which the LED must return to their
initial state (mask[0]) and repeat the pattern.

 STSW45x0C LMAC API Page 20/29

STSW45x0C LMAC API ED1P4

3 Interfaces & mechanisms

3.1 Object management

All operations on LMAC objects by the application are headed by an s_lm_control header. The object data
directly trails the s_lm_control header. Objects can be of access Read, Write, Read-Write or Trap. The
application is responsible for maintaining range, bounds and length constraints.
Write operations are identified by a set LM_CTRL_OPSET flag. The LMAC does not generate a response for
write operations.
Read operations are identified by a cleared LM_CTRL_OPSET flag. The data part of the control structure must be
large enough to hold the result of the read operation. The LMAC generates a response for read operations, with the
same message type as the request.
Trap operations are initiated by the LMAC by definition. A trap can be distinguished from a Read response
because the LM_CTRL_OPSET flag is set 2 .
Messages with application initiated operations (Read, Write and Read-Write) must be addressed within the
application managed buffer. The address member in the response message can be used to distinguish between
several outstanding operations on the same object. LMAC initiated operations may originate from anywhere,
consequently the address member of the message is reserved.

3.2 LMAC and BSS setup and synchronization

The Setup object is used to setup the LMAC and setup or join a BSS. The object configures LMAC properties like
the LMAC’s MAC address, and receive buffer setup and BSS settings, like the BSS’s BSSID (for frame filtering
purposes), frequency of the BSS and which rates must be used as basic rates.

3.2.1 Initial setup

The initial set of the Setup object is used to configure the receive buffer and receive MTU. The rx_buffer
structure member configures the address of the receive buffer within the application managed buffer. The receive
buffer occupies the top part of the application managed buffer, starting at the address in rx_buffer and ending
at the top of the application managed buffer. The rx_mtu member specifies the MTU the LMAC must be able to
receive. From this data, the LMAC sets up it’s receive queue.
In subsequent writes to the Setup object, the rx_buffer and rx_mtu members are ignored.

3.2.2 Setup

The Setup object configures the LMAC’s mode (client or access point) and BSS type (infrastructure or IBSS),
along with BSS some properties like basic rates.
Before a setup is done, the LMAC must be configured at the correct frequency by means of the Scan object, with
the LM_SCAN_EXIT flag set.
If an IBSS is setup or joined, or an infrastructure is setup in access point mode, the application must submit a fully
formatted beacon frame from which the LMAC derives the BSS’s parameters like beacon period, DTIM period;
etc… in the LMAC’s LM_QUEUE_BEACON queue after the Setup object is set.
New beacons may be submitted during the lifetime of the BSS, without cancelling the previous beacon. The
LMAC returns the previous beacon through the frame feedback mechanism and update the BSS settings according
to the settings in the beacon. If the LMAC has a beacon and the setup is changed to a configuration that does not

2 Note that the access type also disguises a Read response from a Trap; there are no objects with access Read and Trap.

 STSW45x0C LMAC API Page 21/29

STSW45x0C LMAC API ED1P4

need a beacon, the beacon must be cancelled. The beacon is then returned to the application through the feedback
mechanism so the application can free the resource in its buffer management.
After the beacon is submitted, the BSS TSF timer is started and the Beacon is repeated at every TBTT, where the
LMAC takes care of adapting dynamic elements like the Timestamp, DTIM count, TIM, etc…

3.3 Frame transmission

3.3.1 Transmission

All frames transmitted by the application to the LMAC contain an s_lm_data header, with an embedded
s_lm_data_out header. The frame data directly trails the s_lm_data header. Frames are referenced by the
LMAC memory address the frame is transferred to.

3.3.2 Feedback
Upon successful or failed transmission of a frame by the LMAC, the LMAC traps a Tx feedback object to the
application. The object is transferred over the same channel as frames are.
Once the trap has been received, the application can assume that the frame and its associated memory are not
referenced by the LMAC anymore.
If the frame is part of a set of fragmented frames, the remaining fragments must be cancelled by the application.

3.3.3 Cancellation
Once frames have been submitted to the LMAC for transmission, the application may cancel frames through the
Tx Cancel object, for example because of transmission lifetime expiration. The object is transferred over the same
channel as frames are.
The LMAC traps a Tx feedback object upon cancellation of the frame. The LM_TX_FAILED flag is set, if the
frame was successfully cancelled. A regular feedback object without the LM_TX_FAILED flag is trapped, if the
frame could not be cancelled because it was already successfully sent. A frame that was exhaustively retried
(which also has the LM_TX_FAILED flag set) can be distinguished from a frame that was cancelled by
comparing the number of actual retries in the Tx feedback object to the number of retries the frame was supposed
to have.
Note that for multicast and broadcasts the LM_TX_FAILED flags are also well defined; if a group addressed
frame is successfully cancelled the LM_TX_FAILED flag is set. If a group addressed frames could not be
cancelled and was sent, LM_TX_FAILED is cleared.

3.3.4 Bursting
The bursting mechanism is based on the application providing the LMAC with information about the duration of
pending frames. This can either be through the duration member of the s_lm_data_out structure, or by setting
the Burst update object.
The piggy-backed method must be used if the application can send frames to the LMAC. The burst update method
can be used if the application cannot update the burst-size because the driver does not allow transferring frame
messages, if no frames are available to piggy-back the information on, or if an explicit update is necessary.

3.3.5 Encryption

The LMAC may implement hardware acceleration for the at least the encryption part of the privacy mechanism for
frame transmission. The SoftMAC must implement the protocol functions. The crypt_offset member in the
s_lm_data_out structure specifies the offset at which the encryption engine must start crypting, using the final
key as specified in the same structure. The encryption engine crypts until the end of the frames, possibly extending
the frame with an ICV.

 STSW45x0C LMAC API Page 22/29

STSW45x0C LMAC API ED1P4

3.4 Frame reception

All frames received by the LMAC are transferred to the application by means of an s_lm_data header, with an
embedded s_lm_data_in header. The frame data directly trails the s_lm_data header.

3.4.1 Frame matching

The LMAC determines for each received frame the following properties;
• Frame Check Sequence success/failure (LM_IN_FCS_MATCH),
• Address1 matching (LM_IN_MATCH_MAC, LM_IN_MCBC),
• BSS matching (LM_IN_MATCH_BSS, LM_IN_BCAST_BSS),
• Type matching (LM_IN_DATA).

LM_IN_FCS_MATCH is set if the frame’s check sequence (FCS) is successful. This is an indication that the
frame was received without bit errors.
LM_IN_MATCH_MAC is set if address1 matches the LMAC’s MAC address. LM_IN_MCBC is set if address1’s
group address bit is set.
LM_IN_MATCH_BSS is set by comparing either address2 or address3 to the configured BSSID, depending on
whether the FromDS bit in the control field is set (address2) or not (address3). The caveat is that
LM_IN_MATCH_BSS is not correct for the following cases;

• PS-Poll frames or frames with the ToDS bits set, with the BSSID in address1. These frames are always
addressed to an access point, where address1 must match the access point’s MAC address.

• CF-End and CF-End+CF-Ack frames.
• Control frames. These frames may have spurious matches because the match is performed, even if there

is no address3.
LM_IN_BCAST_BSS is set if the group address bit of address2 or address3 (depending on the FromDS bit) is set.
LM_IN_DATA is set if the frame is of type data, and is not of sub-type Null.

3.4.2 Decryption

The LMAC may implement hardware acceleration for privacy decrypt. The LMAC at least implements those
functions necessary to determine the type of encryption, the offset at which the decryption must start and what key
must be used for decryption. The LMAC also implements a SoftMAC managed key-cache to get its keys from.
The LMAC may fail to decrypt a frame because of a miss in the key-cache. In this case, the LMAC returns
LM_IN_NOKEY. If the LMAC finds a key and decrypts the frame, but the Integrity Check Sequence (ICV) fails
because it uses the wrong key, the decrypted frame is returned with status LM_IN_DECFAIL. Failure to decrypt
because of unknown or unsupported privacy algorithm returns the encrypted frame with status LM_IN_DECALG.

 STSW45x0C LMAC API Page 23/29

STSW45x0C LMAC API ED1P4

3.5 PSM

3.5.1 Client mode

• Infrastructure mode
The application switches between PSM and CAM (Continuous Awake Mode) modes by setting PSM object to
indicate desired power save state, by setting or clearing the LM_PSM flag.
If the desired state is PSM, the LMAC sets Power Management bit in the control field on all outgoing frames (this
is done when frame is actually transmitted, not earlier).
If desired state is CAM (Continuous Awake Mode), the LMAC doesn't update the control field’s Power
Management bit (the bit may still be set by application, or left on by earlier transmit attempt).
The LM_TX_PSM bit in the flags member of the Tx feedback object indicates the state of the control field’s
Power Management bit in the acked frame.
To change the PSM state when the transmit queues are empty, the application is responsible for sending a null
frame. If the transmit queue is not empty, the application may decide to only use the PSM object to change to PSM
mode, and wait for feedback frame. If, due to race conditions, the frame was transmitted with Power Management
bit cleared, the application is responsible for sending an additional null frame.
If the desired state is PSM, and a frame with the Power Management bit set was successfully acknowledged and
the transmit queues are empty, the LMAC enters PSM.
The PSM object’s interval member specifies the maximum number of beacon intervals for which the LMAC
powers down if no data is available for transmission or retrieval. The Listen Interval is synchronized to the access
point’s DTIM interval.
If the PSM object’s LM_PSM_MCBC flag is set, and a beacon is received with the TIM’s multicast traffic bit set,
the LMAC will stay awake until all group addressed frames have been received (e.g. until the LMAC receives a
group addressed frame with the control field’s More Data bit cleared, or until the next TIM’s multicast traffic bit is
cleared).
The aid structure member of the PSM object configures the AID the LMAC must monitor. If the TIM indicates
unicast traffic for the given AID, LMAC will stay awake until unicast data is received with control field’s More
Data bit cleared, or until next TIM.

• Beacon filtering
To prevent passing every received beacon to the application (which may have a considerable impact on the
application’s host power efficiency), the application can specify which beacons the LMAC must pass to the
application.
The LM_PSM_CHECKSUM flag configures the LMAC to calculate a checksum over the beacon frame body. The
checksum is calculated over the frame-body, starting after the timestamp element. Excluded from the checksum
calculation are all flexible elements, with a corresponding element ID in the exclude array structure member.
The beacon is forwarded to the application, if the checksum changes from the previous received beacon.
The Setup object also passes a timeout member that specifies the maximum period of time between Beacons. If
within that period no beacon is received, the LM_TRAP_NO_BEACON trap is generated. The application can use
this to decide that the connection with the AP is lost. The LMAC resets the timeout for every beacon it receives
from the BSS it is joined with. The LMAC also resets the timeout when the application starts or continues a scan.

 STSW45x0C LMAC API Page 24/29

STSW45x0C LMAC API ED1P4

3.6 Scanning

Scanning is initiated by setting the Scan object. The Scan object causes the LMAC to stop transmitting from its
queues and change frequency. The LMAC exits from scanning mode and returns to the given frequency if the
LM_SCAN_EXIT flag is set. If the LM_SCAN_EXIT flag is cleared, the LMAC remains in scanning mode until
the Scan object is set with the LM_SCAN_EXIT flag set. A scan can also be aborted, or the application can
recover from a lingering scan mode by setting the dwell time to 0 and setting the LM_SCAN_EXIT flag.
If the LM_SCAN_TRAP flag is set, the LMAC traps a generic trap with number LM_TRAP_SCAN upon expiry
of the dwell time (as specified by the dwell structure member). A dwell time of 0 causes an immediate trap.
If the LM_SCAN_ACTIVE flag is set, the LMAC generates a probe request on the specified frequency, according
to the rules specified for active scanning.

3.6.1 Probe requests
The probe request for active scanning must be preformatted by the application and sent to the LMAC to a special
scan queue. The probe request remains in the queue for active scanning until it is specifically cancelled by the
application.

3.7 Filtering

The LMAC provides an option of enabling and disabling Multicast and ARP filtering.

3.7.1 Multicast Filtering
Multicast filtering is used to filter out the unnecessary multicast traffic based on the Destination mac address.
Whenever the multicast packet is received by the device it checks whether the destination mac address matches
with any of the multicast addresses configured on the device. If this condition holds valid, it implies the packet
belongs to the device multicast group and hence it’s forwarded to the host and in case of mismatch it’s dropped.
Since the wireless LAN is the broadcast medium, multicast filtering minimizes the flooding of the multicast
packets to the host which reduces the overall power consumption of the device and hence increases the standby
time.

Object

LM_OID_GROUP_ADDRESS_TABLE

Structure

#define MC_FILTER_ADDRESS_NUM 4

Struct s_lmo_group_address_table
{
 uint16_t filter_enable;
 uint16_t num_address;
 uint8_t macaddr_list[MC_FILTER_ADDRESS_NUM][6];
};

filter_enable Enable or disable the Multicast filtering.
1:- Multicast filtering enabled.
0:- Multicast filtering disabled.

Num_address Number of multicast groups subscribed by the
device.

macaddr_list Multicast mac address of the groups subscribed.

 STSW45x0C LMAC API Page 25/29

STSW45x0C LMAC API ED1P4

3.7.2 ARP Filtering
Arp filtering is used to filter out the ARP request broadcast packets to reduce the interrupt activity on host side and
reduces the overall power consumption of the device. Using ARP filtering a fixed IP address can be configured in
the device and all ARP requests packets corresponding to the configured IP address will be passed to the host rest
will be dropped.

Object

LM_OID_ARPTABLE

Structure

Struct s_lmo_arp_table
{
 uint16_t filter_enable;
 uint32_t ipaddr;
};

filter_enable Enable or disable the ARP filtering.
1:- ARP filtering enabled.
0:- ARP filtering disabled.

ipaddr IP address for which ARP requests packets needs
to be sent to host.

3.8 Statistics

The LMAC Statistics object provides the application access to LMAC statistics on medium state, radio
performance and timing aspects. All statistics are cumulative; periodical properties can be derived by storing a
previous result of a query and subtracting individual members. The exact measurement period can be derived from
the timestamp member.

3.8.1 Noise histogram

The LMAC samples RSSI, CCA and transmit state at regular periods (typically 8 times per 1 kμsec). The result of
RSSI samples (in other words the samples that were taken in a non-CCA and non-transmit state) are categorized in
the following ranges;

 STSW45x0C LMAC API Page 26/29

STSW45x0C LMAC API ED1P4

RSSI
category

Power observed at Antenna (dBm)

0 RSSI ≤ -87

1 -87 < RSSI ≤ -82

2 -82 < RSSI ≤ -77

3 -77 < RSSI ≤ -72

4 -72 < RSSI ≤ -67

5 -67 < RSSI ≤ -62

6 -62 < RSSI ≤ -57

7 -57 < RSSI

The total number of samples can be derived by adding the delta of all categories of RSSI samples, CCA samples
and transmit state samples.

 STSW45x0C LMAC API Page 27/29

STSW45x0C LMAC API ED1P4

Appendix

N.A

 STSW45x0C LMAC API Page 28/29

STSW45x0C LMAC API ED1P4

References
LMAC API header file (lmac_longbow.h)

 STSW45x0C LMAC API Page 29/29

