
mac80211 overview

Johannes Martin Berg

2009-02-25

Introduction

mac80211

• is a subsystem to the Linux kernel

• implements shared code for soft-MAC/half-MAC wireless
devices

• contains MLME and other code, despite the name

2 / 47 2009-02-25

Introduction – History (non-technical)

January 2006 John Linville starts as wireless maintainer
April 2006 First wireless summit (Beaverton)
May 1, 2006 Devicescape press release

(Advanced Datapath Driver as GPLv2)
May 2006 - May 2007 Lots of work on stack

(initially much by Jiri Benc/SuSE)
including rename from d80211 to mac80211

May 5, 2007 Merged for 2.6.22
Oct 23, 2007 I first ’officially’ take mac80211 responsibility

3 / 47 2009-02-25

Introduction – History (technical)

Some notable additions to mac80211:

HT/aggregation support Intel
802.11s draft support cozybit through o11s.org
802.11w draft support Jouni Malinen (Atheros)
PS (infrastructure mode) Kalle Valo (Nokia)

Vivek Natarajan (Atheros)
beacon processing offload (WIP) Kalle Valo (Nokia)

4 / 47 2009-02-25

Introduction – History (technical)

beacon processing offload

• beacon processing
• beacon miss actions
• signal strength monitoring
• beacon change monitoring

• offload
• don’t use software for above tasks
• have device (firmware) do this
• results in much fewer CPU wakeups

5 / 47 2009-02-25

Architecture

mac80211

cfg80211

userspace

iwlwifi other drivers

wext

w
e
x
t

nl80211

cfg80211_ops

ieee80211_ops

6 / 47 2009-02-25

Architecture

internally

• TX/RX paths (including software en-/decryption)

• control paths for managed, IBSS, mesh

• some things for AP (e.g. powersave buffering)

• ...

7 / 47 2009-02-25

Code structure

Most important for driver authors:

include/net/mac80211.h

This file defines the API to mac80211 from below.

8 / 47 2009-02-25

Code structure

All files except the header file are in net/mac80211/.
Kconfig, Makefile build system
ieee80211 i.h most internal data structures
main.c main module entry points

main entry points for driver calls (reg/dereg)
iface.c virtual interface handling
key.c, key.h key management
sta info.c, sta info.h Station (peer) management
pm.c power management (suspend/hibernate)
rate.c, rate.h internal rate control functions
rc80211* rate control algorithms
rx.c frame receive path
tx.c frame transmit path
scan.c software scanning code

9 / 47 2009-02-25

Code structure

ht.c, agg-rx.c, agg-tx.c HT/aggregation code
mesh{, hwmp, plink, pathtbl}.{c,h} 802.11s mesh
mlme.c Station/managed mode MLME
ibss.c IBSS MLME
cfg.c, cfg.h, wext.c configuration entry points
event.c events to userspace
spectmgmt.c spectrum management code
aes*, tkip.*, wep.*, michael.*, wpa.* WPA/RSN/WEP code
wme.c, wme.h some QoS code
util.c utility functions
led.c, led.h LED handling
debugfs* debugfs code

10 / 47 2009-02-25

Data structures

• ieee80211 local/ieee80211 hw

• sta info/ieee80211 sta

• ieee80211 conf

• ieee80211 bss conf

• ieee80211 key/ieee80211 key conf

• ieee80211 tx info

• ieee80211 rx status

• ieee80211 sub if data/ieee80211 vif

11 / 47 2009-02-25

Data structures – ieee80211 local/ieee80211 hw

• each instance of these (hw is embedded into local) represents
a wireless device

• ieee80211 hw is the part of ieee80211 local that is visible to
drivers

• contains all operating information about a wireless device

12 / 47 2009-02-25

Data structures – sta info/ieee80211 sta

• represents any station (peer)

• could be mesh peer, IBSS peer, AP, WDS peer

• would also be used for DLS peer

• ieee80211 sta is driver-visible part

• ieee80211 find sta for drivers

• lifetime managed mostly with RCU

13 / 47 2009-02-25

Data structures – ieee80211 conf

• hardware configuration

• most importantly - current channel

• intention: hardware specific parameters

14 / 47 2009-02-25

Data structures – ieee80211 bss conf

• BSS configuration

• for all kinds of BSSes (IBSS/AP/managed)

• contains e.g. basic rate bitmap

• intention: per BSS parameters in case hardware supports
creating/associating with multiple BSSes

15 / 47 2009-02-25

Data structures – ieee80211 key/ieee80211 key conf

• represents an encryption/decryption key

• ieee80211 key conf given to driver for hardware acceleration

• ieee80211 key contains internal book-keeping and software
encryption state

16 / 47 2009-02-25

Data structures – ieee80211 tx info

• most complicated data structure

• lives inside skb’s control buffer (cb)

• goes through three stages (substructure for each)
• initialisation by mac80211 (control)
• use by driver (driver data/rate driver data)
• use for TX status reporting (status)

17 / 47 2009-02-25

Data structures – ieee80211 rx status

• contains status about a received frame

• passed by driver to mac80211 with a received frame

18 / 47 2009-02-25

Data structures – ieee80211 sub if data/ieee80211 vif

• contains information about each virtual interface

• ieee80211 vif is passed to driver for those virtual interfaces
the driver knows about (not monitor, VLAN)

• contains sub-structures depending on mode
• ieee80211 if ap
• ieee80211 if wds
• ieee80211 if vlan
• ieee80211 if managed
• ieee80211 if ibss
• ieee80211 if mesh

19 / 47 2009-02-25

Main flows

• configuration

• receive path

• transmit path

• management/MLME

20 / 47 2009-02-25

Main flows – configuration

• all initiated from userspace (wext or nl80211)

• for managed and IBSS modes: triggers statemachine (on
workqueue)

• some operations passed through to driver more or less directly
(e.g. channel setting)

21 / 47 2009-02-25

Main flows – receive path

• packet received by driver

• passed to mac80211’s rx function (ieee80211 rx) with
rx status info

• for each interface that the packet might belong to
• RX handlers are invoked
• data: converted to 802.3, delivered to networking stack
• management: delivered to MLME

22 / 47 2009-02-25

Main flows – transmit path

• packet handed to virtual interface’s ieee80211 subif start xmit

• converted to 802.11 format

• sent to master interface

• packet handed to ieee80211 master start xmit

• transmit handlers run, control information created

• packet given to driver

23 / 47 2009-02-25

Main flows – transmit path

transmit handlers

• ieee80211 tx h check assoc

• ieee80211 tx h ps buf

• ieee80211 tx h select key

• ieee80211 tx h michael mic add

• ieee80211 tx h rate ctrl

• ieee80211 tx h misc

• ieee80211 tx h sequence

• ieee80211 tx h fragment

• ieee80211 tx h encrypt

• ieee80211 tx h calculate duration

• ieee80211 tx h stats

24 / 47 2009-02-25

Main flows – management/MLME

DISABLED

SCAN_FIND_BSS

START

scan done

BSS not found
after 2 scans

no BSS info

DIRECT_PROBE

no current presp

AUTHENTICATE

have recent info

3 x 0.2s

presp deauth

AUTH_OPEN

AUTH_LEAP

not open/shared, leap enabled

AUTH_SHARED

open disabled, shared enabled, WEP key configured

3 x 0.2s denied ASSOCIATE

auth response OK

unsupported

3 x 0.2s

deauth

ASSOCIATED

assoc response

3 x 0.2s not successful

auth response OK

3 x 0.2s

unsupported
leap disabled

denied

unsupported
leap enabled

AUTH_SHARED_CHALLENGE

challenge

denied 3 x 0.2s

reply OK

deauth

disassoc

AP_PROBE

no frames for 2s

1 x 2s

presp

25 / 47 2009-02-25

Main flows – management/MLME

DISABLED

SCAN_FIND_BSS

START

scan done

BSS not found
after 2 scans

no BSS info

DIRECT_PROBE

no current presp

AUTHENTICATE

have recent info

3 x 0.2s

presp deauth

AUTH_OPEN

AUTH_LEAP

not open/shared, leap enabled

AUTH_SHARED

open disabled, shared enabled, WEP key configured

3 x 0.2s denied ASSOCIATE

auth response OK

unsupported

3 x 0.2s

deauth

ASSOCIATED

assoc response

3 x 0.2s not successful

auth response OK

3 x 0.2s

unsupported
leap disabled

denied

unsupported
leap enabled

AUTH_SHARED_CHALLENGE

challenge

denied 3 x 0.2s

reply OK

deauth

disassoc

AP_PROBE

no frames for 2s

1 x 2s

presp

26 / 47 2009-02-25

Main flows – management/MLME

Ok, so you didn’t want to know that precisely.

• requests from user are translated to internal variables

• state machine is run depending on user request

• normal way looks like this:
• probe request/response
• auth request/response
• assoc request/response
• notification to userspace

27 / 47 2009-02-25

Main flows – management/MLME

For IBSS (wasn’t on the state machine slide) it’s simpler

• try to find IBSS

• join IBSS or create IBSS

• if no peers periodically try to find IBSS to join

28 / 47 2009-02-25

Handoff points

Three main points

• configuration (from userspace)

• mac80211/rate control

• mac80211/driver

29 / 47 2009-02-25

Handoff points – configuration

• Wireless extensions (wext)

• cfg80211 (which userspace talks to via nl80211)

30 / 47 2009-02-25

Handoff points – configuration – wext

Currently still includes

• setting SSID, BSSID and other association parameters

• setting RTS/fragmentation thresholds

• encryption keys in managed/IBSS modes

31 / 47 2009-02-25

Handoff points – configuration – cfg80211

Is being extended, already has

• scanning

• station management (AP)

• mesh management

• virtual interface management

• encryption keys in AP mode

(See more in cfg80211/nl80211/userspace talk.)

32 / 47 2009-02-25

Handoff points – from mac80211 to rate control

• Rate control is semantically not part of driver

• per-driver selection of rate control algorithm

• rate control fills ieee80211 tx info rate information

• rate control informed of TX status

33 / 47 2009-02-25

Handoff points – from mac80211 to driver

• many driver methods (ieee80211 ops)

• mac80211 also has a lot of exported functions

• refer to include/net/mac80211.h

34 / 47 2009-02-25

Execution contexts

• config flows: userspace process context

• state machine flows: workqueue context

• packet processing flows: tasklet context

• some callbacks: interrupt context (irqsafe functions)

35 / 47 2009-02-25

Synchronisation mechanisms

background – RCU

• read - copy - update

• think read/write locks without locking reads

• instead, copy structure, and atomically publish

• problem: when to get rid of old copy

36 / 47 2009-02-25

Synchronisation mechanisms

background – rtnl

• “big networking lock”, global lock

• used to protect all configuration calls, e.g. interface start/stop

• consequently used by wireless extensions to protect config calls

37 / 47 2009-02-25

Synchronisation mechanisms

• config flows: mostly rtnl

• a lot of RCU-based synchronisation (sta info, key
management)

• mutex for interface list management

• spinlocks for various tightly constrained spots like sta list
management, sta info members etc.

• some more specialised locks

38 / 47 2009-02-25

Stay up-to-date

• http://wireless.kernel.org/en/developers/Documentation/mac80211

• especially
http://wireless.kernel.org/en/developers/Documentation/mac80211/API

• also http://wireless.kernel.org/en/developers/todo-list/

• subscribe to wiki changes on these pages

• follow patches going in: git log -- net/mac80211/

• read the wireless list
(http://wireless.kernel.org/en/developers/MailingLists)

39 / 47 2009-02-25

Thank you for your attention.

Questions?

40 / 47 2009-02-25

virtual interfaces

driver/hardware

vif 1 vif 2 vif 3 ...

master interface

41 / 47 2009-02-25

virtual interfaces

• allow, in theory, multiple network interfaces on single hardware

• for example WDS and AP interfaces (to be bridged)

• for example multiple AP interfaces (multi-BSS)

• any number of monitor interfaces

• any number of AP VLAN interfaces (to implement multi-SSID
with single BSSID)

42 / 47 2009-02-25

virtual interfaces

supported interface types

• ad-hoc (IBSS)

• managed

• AP and AP VLAN

• WDS

• mesh point

• monitor

43 / 47 2009-02-25

virtual interfaces

relevancy to drivers

• drivers need to allow each interface type

• drivers need to support certain operations for certain interface
types

• drivers can support multiple virtual interfaces

• but: drivers not notified of monitor interfaces

44 / 47 2009-02-25

filter flags

• used to configure hardware filters

• best-effort, not all filter flags need to be supported

• best-effort, not all filters need to be supported

• filter flags say which frames to pass to mac80211 – thus a
filter flag is supported if that type of frames passed to
mac80211

• passing more frames than requested is always permitted but
may affect performance

45 / 47 2009-02-25

filter flags

monitor interfaces

• handled entirely in mac80211

• may affect filters depending on configuration

• it is possible to create a monitor interface that does not affect
filters, can be useful for debugging (iw phy phy0 interface add
moni0 type monitor flags none)

46 / 47 2009-02-25

Even backup slides end somewhere.

47 / 47 2009-02-25

	Introduction
	History (non-technical)
	History (technical)

	Architecture
	Code structure
	Data structures
	ieee80211_local/ieee80211_hw
	sta_info/ieee80211_sta
	ieee80211_conf
	ieee80211_bss_conf
	ieee80211_key/ieee80211_key_conf
	ieee80211_tx_info
	ieee80211_rx_status
	ieee80211_sub_if_data/ieee80211_vif

	Main flows
	configuration
	receive path
	transmit path
	management/MLME

	Handoff points
	configuration
	configuration -- wext
	configuration -- cfg80211
	from mac80211 to rate control
	from mac80211 to driver

	Execution contexts
	Synchronisation mechanisms
	Stay up-to-date
	
	virtual interfaces
	filter flags
	

